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It is well known that Efron's bootstrap can fail in settings where the data are heavy tailed and
when regularity conditions do not hold. Naturally this applies to weighted bootstrap schemes
such as the Bayesian bootstrap. To deal with this, we introduce a Bayesian bootstrap analogue
of them out of n bootstrap. This bootstrap differs from traditionalm out of n bootstraps in that
all n observations are used in the bootstrap test statistic. Moreover, the method is relatively
robust to the selection of m. We establish consistency for the new bootstrap and examine
its other useful properties including a connection to the Dirichlet process. Several examples
illustrating consistency in settings where the Efron bootstrap fails are given. Further general-
izations are suggested.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Efron's (1979) bootstrap has enjoyed wide popularity since the early 1980s. In the classical setting of n i.i.d. observations,
say X1, . . . ,Xn, the idea of the bootstrap is to re-sample these n points with replacement and form a bootstrapped version of the
original statistic. Specifically, a bootstrap sample {X∗

1, . . . ,X
∗
n} is created where the X∗

i are i.i.d. observations from the probability
measure

PB(·) =
n∑

i=1

Mn,i�Xi (·),

where (Mn,1, . . . ,Mn,n) follow a multinomial (n; 1/n, . . . , 1/n) distribution (�x is a probability measure concentrated on x). The
bootstrap has been shown to be asymptotically consistent in terms of approximating the sampling distribution of statistics in a
variety of settings. This started with the work of Bickel and Freedman (1981). Singh (1981) showed in the case of approximating
the samplingmean one could obtainmore accurate approximations than those based on the normal distribution. These successes
of the bootstrap raised the question whether there are other similar schemes. Rubin (1981) suggested one could mimic many
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properties of the bootstrap by replacing the multinomial weights by an n-variate Dirichlet(1, . . . , 1) vector, (D1, . . . ,Dn). Formally
resulting in the Bayesian bootstrap empirical measure,

n∑
i=1

Di�Xi (·)
d=

n∑
i=1

Zi∑n
k=1Zk

�Xi (·),

where Z1, . . . , Zn are i.i.d. exponential (1) random variables.
This procedure is commonly referred to as the Bayesian bootstrap. Lo (1987) subsequently showed the Bayesian bootstrap

enjoyed the same consistency properties discussed in Bickel and Freedman. Further, he showed the Bayesian bootstrap was
consistent in terms of approximating the posterior distribution of a Dirichlet process, see Ferguson (1973). A generalization of
this scheme replaces the n-variate Dirichlet(1, . . . , 1) vector with an n-variate Dirichlet(�, . . . ,�) vector for some � >0. This is a
sub-class of Bayesian bootstrap clones defined in Lo (1991).

The choice of � in the Bayesian bootstrap clone is significant. Weng (1989) showed in parallel to Singh (1981), the Bayesian
bootstrap (i.e. � = 1) is second order accurate for approximating the posterior distribution of a Dirichlet mean, but not second
order accurate for approximating the distribution of the sample mean. Weng (1989) also showed the choice of � = 4 leads to a
Bayesian bootstrap clone second order accurate for approximating the distribution of the samplemean. See Haeusler et al. (1991),
Barbe and Bertail (1995), and James (1997) for the case of more general functionals and weighted bootstrap procedures.

More generally, Mason and Newton (1992) showed replacing the multinomial weights by a variety of exchangeable weights
(Wn,1, . . . ,Wn,n) satisfying mild conditions would lead to the same consistency results. The work of Giné and Zinn (1984) and
Praestgaard andWellner (1993) on the limiting distribution of bootstrapped and exchangeably weighted bootstrapped empirical
measures, as well as numerous investigations by other authors, have shown these schemes are valid in a variety of complex
statistical applications. Arguably, among the exchangeable weighted bootstrap procedures, the Bayesian bootstrap is the most
appealing. Reasons for this include its ease of use, and its interpretability in relation to the Dirichlet process and empirical
likelihood (Owen, 1990). Further, it has interesting usage in terms of phylogenetic trees as described in Efron (2003, p. 139). It
may also enjoy some advantages over Efron's bootstrap in situations where ties in the dataset play some role.

However, despite these successes, there are a number of situations where Efron's bootstrap, and hence the exchangeable
bootstrap procedures mentioned above, is known to fail asymptotically. There has been a great deal of research interest focused
on such examples. Early examples focused on the situation where the data came from a heavy-tailed distribution. For example,
see Athreya (1987), Knight (1989), Arcones and Giné (1989), Deheuvels et al. (1993), Zarepour and Knight (1999), Zarepour (1999)
and Hall (1990). In these papers, they mostly study asymptotic behavior of the Efron bootstrap applied to the mean and in some
cases to the extreme of i.i.d. random variables. Bickel et al. (1997) discuss more general situations where the bootstrap fails
unless precise regularity conditions hold. As discussed, and mentioned elsewhere, a widely applicable remedy relies on taking
re-samples of the data {X1, . . . ,Xn} of size m rather than n, where m is chosen so that m = o(n). When m data points are sampled
with replacement, resulting in a bootstrap sample {X∗

1, . . . ,X
∗
m}, this scheme is referred to as an m out of n bootstrap. When m is

chosen without replacement the scheme corresponds to the sub-sampling procedure of Politis and Romano (1994). See also Wu
(1990) and Politis et al. (1999). See the articles by Efron (2003), Davison et al. (2003) and Politis (2003) for a recent overview of
some of these concepts.

In this paper, we introduce a Bayesian bootstrap analogue of the m out of n bootstrap. We study the asymptotic behavior of
this procedure and demonstrate consistency in examples where Efron's bootstrap fails. Our approach relies on the use of point
process theory. We study the limit of the bootstrapped point process and through the use of a continuity argument establish
consistency for many types of statistics. Our procedure can be implemented easily in practice and has wide applicability to
complex statistics such as convex hulls. It is important to mention the weights introduced in this paper can be an excellent
candidate for the generalized bootstrap for estimating equations proposed by Chatterjee and Bose (2005). We also establish an
interesting relationship to the Dirichlet process and the important class of finite dimensional Dirichlet processes of Ishwaran
and Zarepour (2002). Finally, we emphasize that the work of Del Barrio and Matran (2000) (see also Barbe and Bertail, 1995, pp.
85–91) describes conditions on the weights under which a general weighted bootstrap scheme would be consistent. However,
they do not identify an explicit construction such as our Bayesian bootstrap.

2. The Bayesian analogue of the m out of n bootstrap

Wenow introduce our Bayesian bootstrap scheme (the Bayesian sub-sampled bootstrap). Let X=(Xi)i�1 be a sequence of i.i.d.
random variables with distribution P. Let (Zi,n)1� i�n be row-wise independent gamma random variables with shape parameter
�m/n and scale parameter 1 and independent from X. The Bayesian sub-sampled bootstrap is a special type of Bayesian bootstrap
clone (see Lo, 1991 for a definition). Throughout this paper we define

Sn =
n∑

i=1

Zi,n and Wi,n = Zi,n
Sn

.
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The bootstrapped empirical measure for the Bayesian sub-sampled bootstrap is

PW (·) =
n∑

i=1

Wi,n�Xi (·) =
n∑

i=1

Zi,n
Sn

�Xi (·).

The distribution of the vector (W1,n, . . . ,Wn,n) is Dirichlet with identical parameters �m/n. Thus each weight is Beta(�m/n,
�(m/n)(n − 1)). Perhaps an appropriate name for this procedure is then Bayesian bootstrap m out of n, referred to as Bayesian
sub-sampled bootstrap.

One application of the Bayesian subsampled bootstrap is the following procedure for approximating the distribution of a test
statistic under the bootstrapped empirical measure:

1. Simulate Z1,n, . . . , Zn,n independently from a Gamma(�m/n, 1) distribution.
2. Evaluate �∗ = �(PW , P̂) where P̂ is the empirical measure for X1, . . . ,Xn.
3. Repeat 1 and 2, say K times, to obtain �∗

1, . . . ,�
∗
K .

One then uses the empirical distribution of �∗
1, . . . ,�

∗
K to approximate the distribution L{�(PW , P̂)|X1, . . . ,Xn} which in turn

approximates the distributionL{�(P̂, P)}.
The Bayesian sub-sampled bootstrap procedure also applies to more complex test statistics. For example, in Section 4 we

discuss applications to statistics based on the convex hull of multivariate data. In such instances, the bootstrapped statistic is a
complex function involving weights Wi but not expressible in the form of �∗ as aforementioned. Special techniques are needed
to handle such cases. Theorem 4.1 of Section 4 discusses the consistency of the Bayesian sub-sampled bootstrap in such settings.

An important feature of the Bayesian sub-sampled bootstrap worth noting is that since the data are not re-sampled, it is not
necessary to take m to be an integer as in the m out of n (sub-sampled) bootstrap. Moreover, to have meaningful consistency for
the sub-sampled bootstrap we need to havem tending to infinity with n, but as we show in Section 5 this is not necessary for the
Bayesian sub-sampled bootstrap. Perhaps this is one of the most notable aspects of the procedure. It is also pointed out in Politis
and Romano (1994) that the sub-sampled bootstrap may not work for a statistic sensitive to ties, unless m2/n tends to 0. Since
the Bayesian sub-sampled bootstrap weights are continuous random variables, the problems associated with ties are avoided.

3. Regularly varying tails

First we show our Bayesian bootstrap procedure provides a similar remedy to bootstrap inconsistency as the m out of n
bootstrap in regularly varying tail settings. In all cases,m/n tends to 0 as n tends to infinity.

A sequence of i.i.d. random vectors (Xi)i�1 in Rd is said to have regularly varying tail if there exists a sequence of positive

constants (an)n�1 and a non-null Radon measure � on Rd\{0} such that

nP(a−1
n X1 ∈ ·) v→�(·), (3.1)

where the notation v→ denotes convergence ofmeasureswith respect to the vague topology (Kallenberg, 1983). OnR, letX1, . . . ,Xn
be an i.i.d. sample such that

H(x) = P(|X1| > x) = x−�L(x), (3.2)

where L is a slowly varying function at infinity (i.e. L(tx)/L(x) tends to 1 as x tends to infinity), � >0 and

lim
x→∞

P(X1 > x)
P(|X1| > x) = p, p ∈ [0, 1]. (3.3)

We get (3.1) with

�(dx) = �(pI(x >0)x−�−1 + (1 − p)I(x <0)|x|−�−1) dx. (3.4)

For � ∈ (0, 2), Eqs. (3.2) and (3.3) imply that

a−1
n

n∑
i=1

(Xi − E(X1I(|X1| < an)))→dS,

whereS has a stable distribution and→d denotes convergence in distribution. In this case (Xi)i�1 is said to belong to the domain
of attraction of a stable law with index � ∈ (0, 2) (Feller, 1971). In what follows, take �i := E1 + · · · + Ei, where (Ei)i�1 is an i.i.d.
sequence of exponential (1) random variables. Also let (�i)i�1 be an i.i.d. sequence of random variables with

P(�1 = 1) = 1 − P(�1 = −1) = p,
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which is independent from (�i)i�1. For any given � >0, statements (3.2) and (3.3) are equivalent to

n∑
i=1

�
a−1
n Xi

→d

∞∑
i=1

�
�i�

−1/�
i

, (3.5)

where convergence occurs in distribution with respect to the vague topology (Kallenberg, 1983).
In the presence of heavy tailed observations, point process representations play a crucial role in the asymptotic analysis of

different statistics. For example, the series representation for a symmetric stable random variable with index � ∈ (0, 2) is the sum
of the points of the limiting point process in (3.5), which is

S=
∞∑
i=1

�i�
−1/�
i , (3.6)

when p = q = 0.5. For asymmetric cases when � ∈ [1, 2) a centering term is required for a convergent series but for � ∈ (0, 1)
centering is not necessary. See LePage et al. (1981) for more details.

For simplicity, in the following theoremwe let � ∈ (1, 2). In cases that � ∈ (0, 1], we can obtain a similar result to Athreya (1987)
or Knight (1989) by the use of bootstrap point processes as in Section 4 of this paper. In this paper, without loss of generality, we
can assume � = 1.

Theorem 3.1. Let X = (Xi)i�1 be a sequence of i.i.d random variables in the domain of attraction of a non-degenerate �-stable law
S, 1 <� <2, i.e.

L

⎧⎨
⎩

n∑
i=1

(Xi − E(X1))/an

⎫⎬
⎭ → S.

If X̄ =∑n
i=1Xi/n then

L

⎧⎨
⎩

n∑
i=1

Zi,n(Xi − X̄)/am,n|X
⎫⎬
⎭ P→S,

where

am,n = am(�(�))1/� ≈ m1/�(��(�))1/�.

Here ≈ denotes asymptotic equivalence as n tends to infinity and P→ denotes convergence in probability.
See the Appendix for the proof.

3.1. Studentization

The above result requires in practice that one knows the index �. A remedy is to use a studentized bootstrap as in Arcones and
Giné (1989) expressed in this case as

L

⎧⎨
⎩

n∑
i=1

(Zi,n/Sn)(Xi − X̄)

/√√√√ n∑
i=1

(Zi,n/Sn)
2X2i

∣∣∣∣∣∣X
⎫⎬
⎭

=L

⎧⎨
⎩

n∑
i=1

Zi,n(Xi − X̄)

/√√√√ n∑
i=1

Z2i,nX
2
i

∣∣∣∣∣∣X
⎫⎬
⎭ .

Consistency follows using Giné (1980) and arguments similar to Arcones and Giné (1989). Unlike the finite variance case, the
studentization can be modified in several ways. For example, in the above expression, we can replace the denominator by the
maximum of |Zi,nXi| over i = 1, . . . ,n. In the symmetric case the limit can be written as

T =
∞∑
i=1

�i�
−1/�
i /�−1/�

1 ,

where p = q = 0.5. See also Zarepour and Knight (1999) and Knight (1989).
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3.2. Weighted bootstrap

It is often believed restricting tails of the weights to mimic the tail behavior of the observations may resolve asymptotic
inconsistency of weighted bootstraps in heavy tailed cases. Our forthcoming analysis shows such a choice of weights is asymptot-
ically invalid. Consider the point process

∑n
i=1�a−1

n Xi
and its weighted bootstrap

∑n
i=1�a−1

n WiXi
where (Wi)i�1 is a sequence of

i.i.d. random variables. We investigate under what conditions the asymptotic distributions of both point processes are identical.
Consider the following theorem:

Theorem 3.2. Let X = (Xi)i�1 be a sequence of i.i.d. random variables satisfying (3.2) and (3.3). Let (an)n�1 be the same sequence as
defined in (3.5). Also let (Wi)i�1 be a sequence of i.i.d. random variables independent from X. Then

L

⎛
⎝ n∑

i=1

�
a−1
n WiXi

∣∣∣∣∣∣X
⎞
⎠=L

⎛
⎝ n∑

i=1

�
a−1
n Wi�iH

−1(�i/�n+1)

∣∣∣∣∣∣X
⎞
⎠

a.s.→L

⎛
⎝ ∞∑

i=1

�
Wi�i�

−1/�
i

∣∣∣∣∣∣�1,�1,�2,�2, . . .

⎞
⎠ ,

where H and (�i)i�1 are defined in (3.2) and (3.5), respectively.

Proof. The result immediately follows from Breiman (1968) and an argument similar to Proposition 1 of LePage et al. (1997).
See also LePage et al. (1981). �

Theorem 3.2 shows that the limiting distribution of the weighted bootstrap involves (Wi)i�1. But for the procedure to be
consistent, we must have a limit as on the right-hand side of (3.5), and therefore the weights must disappear. Selecting weights
so that they mimic the tail behavior of the data will not resolve this issue. For example, as suggested by Barbe and Bertail (1995),
let (Wi)i�1 be a sequence of non-negative i.i.d. random variables satisfying (3.1) and independent from X. Also let � ∈ (0, 2) and
G(w) = P(W1 >w) = w−�L(w) for some slowly varying function L(·). Similar to Theorem 3.2, we can show

L

⎛
⎝ n∑

i=1

�
a−1
n WiXi

∣∣∣∣∣∣X
⎞
⎠=L

⎛
⎝ n∑

i=1

�
a−1
n G−1(�i/�n+1)Xi

∣∣∣∣∣∣X
⎞
⎠ a.s.→ L

⎛
⎝ ∞∑

i=1

�
�−1/�
i Xi

∣∣∣∣∣∣X
⎞
⎠ .

Note how the limit depends on X, and therefore that the method is inconsistent.

4. Bayesian bootstrap for point processes

Now we establish asymptotic consistency of the Bayesian bootstrap. Theorem 3.1 and similar results for relatively complex
statistics will be established by the use of the continuous mapping theorem. A key ingredient in our analysis is the following
lemma:

Lemma 4.1. Let (Xi,n)1� i�n be a sequence of independent random elements of E (any Polish space) with a probability measure Pi,n
and � be a non-null Radon measure on E. Assume that sup1� i�nPi,n(A) tends to zero as n tends to infinity for any compact set A.
We have

Nn :=
n∑

i=1

�Xi,n→dN�

if and only if

�n :=
n∑

i=1

Pi,n
v→�, (4.1)

where N� is a Poisson random measure with a mean measure �.

Proof. Wemimic the proof of Proposition 3.21 of Resnick (1987, p. 154). We show that the Laplace functional of Nn converges to
the Laplace functional of N�. Let f be a continuous and non-negative function with compact support. Define fi,n = 1 − E e−f (Xi,n).
We have

log	Nn (f ) = log E exp(−Nn(f )) =
n∑

i=1

log(1 − fi,n).
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Note that sup1� i�nfi,n tends to zero as n tends to infinity as there exists a compact set A (the support of f ) such that this
supremum is at most sup1� i�nPi,n(A). Using the inequality log(1 − x) − x�x2 valid on the non-negative halfline, we obtain

∣∣∣∣∣∣− log	Nn (f ) −
n∑

i=1

fi,n

∣∣∣∣∣∣ �
⎛
⎝ n∑
i=1

fi,n

⎞
⎠
2

� sup
1� i�n

fi,n

n∑
i=1

fi,n. (4.2)

In (4.2),
∑n

i=1fi,n tends to
∫
(1 − e−f (x)) d�(x) and the upper bound tends to 0 as n tends to infinity. Therefore the result follows

immediately. �

Nowwe establish asymptotic consistency of our Bayesian bootstrap for point processes induced by observations in the domain
of attraction of a stable law with index in (0, 2).

Theorem 4.1. Let X = (Xi)i�1 be a sequence of i.i.d. random variables satisfying (3.1) and (3.2). Also let (Zi,n)1� i�n be a sequence

of i.i.d. gamma random variables with shape parameter �m/n and 
 = 1, where m → ∞ and m = o(n). Also take am,n = am(�(�))1/�.
Then given X,

n∑
i=1

�
a−1
m,nXiZi,n

→d

∞∑
i=1

�
�i�

−1/�
i

in probability where (�i)i�1 and (�i)i�1 are defined as before.

Proof. Define X∗
i,n = (XiZi,n)1� i�n. We prove that X∗

i,n satisfies (4.1) with � as given in (3.4). To prove this we need to show

n∑
i=1

P(X∗
i,n ∈ ·|X) v→�(·)

in probability. Take � = 1 (without loss of generality), u>0 and prove

n∑
i=1

P(a−1
m,n|X∗

i,n| >u|X) P→u−� (4.3)

and

n∑
i=1

P(a−1
m,nX

∗
i,n > u|X) P→pu−�. (4.4)

We show that (4.3) holds and (4.4) follows similarly. Following the steps in the proof of Theorem 3.1, we get

n∑
i=1

E{P(a−1
m,n|X∗

i,n| >u|X)} = nP(a−1
m,nZ1,n|X1| >u)

= m
∫ ∞

0
P
(

|X1| > u
x
am,n

)
xm/n−1 e−x

�(m/n + 1)
dx.

Since

mP(a−1
m,n|X1| >u/x) → (u/x)−�(�(�))−1,

we can write

lim
n→∞nP(a−1

m,nZ1,n|X1| >u) = u−��(�) lim
n→∞

∫ ∞

0

xm/n+�−1 e−x

�(m/n + 1)
dx.

Now it remains to show that

nVar{P(a−1
m,nZ1,n|X1| >u|X)} P→0.

Use Markov's inequality to write

P(a−1
m,nZ1,n|X1| >u|X)�

( |X1|
uam,n

)�/2
E(Z�/2

1,n ),
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with

E(Z�/2
1,n )

m/n
→ �(�/2)

as n tends to infinity. The result follows from an approach similar to Theorem 3.1. �

4.1. Remarks

1. If we replace Zi,n with weights Wi,n, where

(W1,n, . . . ,Wn,n) =
(

Z1,n∑n
i=1Zi,n

, . . . ,
Zn,n∑n
i=1Zi,n

)
∼ Dir(�m/n, . . . ,�m/n), (4.5)

we get the same result as above but we have to rescale the points of the bootstrap process. To see this, notice that

n∑
i=1

Zi,n ∼ Gamma(�m, 1)

and it is easy from (4.5) to see that
∑n

i=1Zi,n/m
P→�.

2. In Theorem 4.1, to achieve almost sure convergence with respect to sample paths, we need to impose both conditionsm tends
to infinity and m log log n/n tends to zero when n tends to infinity. See Zarepour and Knight (1999) for details.

3. We can also show that our weights satisfy conditions H1,H2,H4 and H5∗ of Del Barrio and Matran (2000). Conditions H1–H2
are easily established. Now ForH4, take �=1without loss of generality andmimic the same technique in Del Barrio andMatran
(2000) as follows:

P

(√
m max

1� i�n
Wi,n > �

)
�

n

m2�4
E{(mW1,n)

4}. (4.6)

By plugging in

E(W4
1,n) = m/n(m/n + 1)(m/n + 2)(m/n + 3)

m(m + 1)(m + 2)(m + 3)

and a simple calculation, one can show easily that the right-hand side of (4.6) converges to zero. ThereforeH4 holds. It remains
to show that

m
n∑

i=1

W2
i,n

p→1.

Since

mnE(W2
1,n) = mn

m/n(m/n + 1)
m(m + 1)

→ 1,

it is enough to show that

Var

⎛
⎝m

n∑
i=1

W2
i,n

⎞
⎠ → 0.

Since for all i�j,

m2n(n − 1)Cov(W2
i,n,W

2
j,n) → 0,

we need to show that

m2nVar(W2
1,n) = m2nE(W4

1,n) − m2n(E(W2
1,n))

2 → 0, (4.7)

which easily follows since both terms in (4.7) converge to zero.
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Fig. 1. Convex hull of 200 independent observations with x- and y-coordinates drawn independently from a Cauchy distribution.

4.2. Example 1 (convex hulls)

Theorem 4.1 can be generalized tomultivariate distributions with regularly varying tails. Let X= (Xi)i�1 be a sequence of i.i.d.

random vectors in Rd with the multivariate distribution F and there exists a sequence of positive real numbers (an)n�1 such
that

nP(a−1
n ‖X1‖ ∈ dr,X1/‖X1‖ ∈ da) v→�(dr, da) := �r−�−1dr�(da), (4.8)

where � is a finitemeasure defined on the boundary of the d-dimensional unit sphere. For simplicity, in this example, ‖ ·‖ denotes
the Euclidean norm. Other norms also can be used and the results can be expressed similarly. The convergence in (4.8) holds if F
satisfies the multivariate regular variation condition

lim
t→∞

1 − F(tx1, . . . , txd)

1 − F(t, . . . , t)
= H(x1, . . . , xd) >0,

where

H(cx1, . . . , cxd) = c−�H(x1, . . . , xd) for xi >0, i = 1, . . . , d,

c >0 and � >0. For more details, see Resnick (1987, pp. 280–281). In this case it is not difficult to see that

n∑
i=1

�
a−1
n Xi

→d

∞∑
i=1

�
Ui�

−1/�
i

,

where (�i)i�1, as before, are the arrival times of a Poisson process with unit mean and are independent from (Ui)i�1, an i.i.d.

sample taking values on the boundary of the unit sphere in Rd. See Resnick (1987, Section 5.4.2) for more details. Therefore it is
easy to see that given X, with the same (Zi,n)1� i�n (a univariate random variable) and am,n defined in Theorem 4.1,

n∑
i=1

�
a−1
m,nXiZi,n

→d

∞∑
i=1

�
Ui�

−1/�
i

in probability. The asymptotic analysis of our weighted Bayesian sub-sample bootstrap can be extended to multivariate cases.
Some examples are multivariate extremes (coordinatewise extremes) and the convex hulls (the minimal convex set containing
the observations) which were not addressed by Del Barrio and Matran (2000). In this case Efron's bootstrap samples of convex
hulls remain identical in many cases since few extreme points (usually four points in the independent cases) determine the
convex hull (see Fig. 1).

The convex hulls of normalized observations as well as their coordinatewise extremes are continuous functions (with respect
to the vague topology) of the point process induced by the normalized observations (Davis et al., 1987, Theorem 3.1). Therefore
the continuous mapping theorem implies that the distribution of the convex hull of the normalized bootstrapped sample
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(XiZi,n/am,n)1� i�n converges to that of the convex hull of (�−1/�
i Ui)i�1. Convergence holds with respect to the Hausdorff

topology (Matheron, 1975) defined on non-empty compact sets. This convergence can be generalized to the number of vertices
and continuous functions such as the volume of convex hulls. For example, when d = 2, this includes the area and perimeter of
the convex hull. See Davis et al. (1987) and Zarepour (1999).

4.3. Example 2 (multivariate domain of attraction)

For convenience in notation we consider discussion in R2. Generalizing our results to any finite dimension is straightforward.
Let (X,Y) = {(Xi,Yi)}i�1 be an i.i.d. sequence of random vectors in R2. We say (X,Y) is in the domain of attraction of a stable
law with indexes 0 <�1,�2�2 if there exist two positive sequences of constants (an)n�1 and (bn)n�1 and two sequences of
constants (cn)n�1 and (dn)n�1 such that⎛

⎝ n∑
i=1

Xi/an − cn,
n∑

i=1

Yi/bn − dn

⎞
⎠→d(S1,S2)

for a random vector (S1,S2). The marginal limiting distributions are stable with indexes �i ∈ (0, 2], i = 1, 2. We do not consider
the case �1 = �2 = 2 since the asymptotic validity of the different bootstraps is well known (see also the next example). Similarly
when �1 =2 and �2 ∈ (0, 2) then (S1,S2) have to be independent (Resnick and Greenwood, 1979, Theorem 1) and the bootstrap
results follow from the univariate case. The only interesting case is when �1,�2 ∈ (0, 2). In this case let

U+(x) = 1
P(X1 > x)

, U−(x) = 1
P(X1� − x)

, x�0, i = 1, 2.

Similarly defineV+(y) andV−(y) by replacing X1 by Y1 and x by y. Let

lim
x→∞

P(X1 > x)
P(|X1| > x) = p, lim

y→∞
P(Y1 > y)
P(|Y1| > y) = 
.

Define

U(x) = pU+(x)I(x >0) − (1 − p)U−(−x).

Similarly defineV(y) by replacing U by V , x by y, and p by 
. We have

n∑
i=1

�(U(Xi)/n,V(Yi)/n)
→d

∞∑
i=1

�
�−1
i Ui

,

where {(Ui,�i)}i�1 are the same as Example 1. For more details see Resnick and Greenwood (1979). Suppose (Zi,n)1� i�n is the
same as in Theorem 3.1. Similar to Example 4.2 we get

n∑
i=1

�Zi,n(U+(Xi)/m,V−(Yi)/m)→d

∞∑
i=1

�
�−1
i Ui

in probability. Now apply the continuous mapping theorem to see that our method remains valid in this case for a point process
induced by certain transferred observations. Note that Efron's subsampled bootstrap also works in this case. To see this notice
that the bootstrap point process induced by the bootstrap sample {(X∗

i ,Y
∗
i ) : i = 1, 2, . . . ,m} is

m∑
i=1

�
(a−1

m X∗
i ,b

−1
m Y∗

i )
→dN

in probability, which is the same as

m∑
i=1

�
(a−1

m Xi ,b
−1
m Yi)

→dN.

The point process N in the above is a Poisson random measure with mean measure � defined in Theorem 4, part (iii) of Resnick
and Greenwood (1979) and {(X∗

i ,Y
∗
i )}(1� i�m) are the bootstrap sample of size m = o(n). This is obvious since

mP∗((a−1
m X∗

i , b
−1
m Y∗

i ) ∈ ·) v→ �(·).

See Zarepour and Knight (1999). The result can be applied to the mapping sum in a similar form as in Theorem 4 of Resnick and
Greenwood.
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4.4. Example 3 (Shao and Tu, 1995)

Let (Xi)i�1 be i.i.d. p-dimensional vectors with mean � and covariance matrix �. Let Tn = g(X̄) be the desired test statistic
where g is a function from Rp to R such that g is twice continuously differentiable with ∇g(�)=0 and ∇2g(�)�0. It is well known
that Efron's bootstrap fails in this case. Like the subsample bootstrap, the consistency of the Bayesian bootstrap analogue, say
g(
∑n

i=1(Zi,n/Sn)Xi), follows from consistency of

√
m

⎛
⎝ n∑
i=1

(Zi,n/Sn)(Xi − X̄)

⎞
⎠

as m → ∞ and m/n → 0. This is immediate from existing results in the literature, say for instance Arenal-Gutiérrez and Matrán
(1996). From their work it is also clear that one could define g(

∑n
i=1Wi,nXi), with (Wi,n)1� i�n general exchangeable weights

satisfying their conditions E1–E5, which would be a consistent method whenm/n tends to 0 as m,n tend to infinity.

4.5. Example 4 (Bickel and Ren, 1996)

Let (Xi)i�1 be a sequence of i.i.d. random variables with distribution F. Under double censoring, one only observes the pairs

(Wi,�i) =
⎧⎨
⎩
(Xi, 1), Vi�Xi�Yi,
(Yi, 2), Xi > Yi,
(Vi, 3), Xi < Vi,

where {(Xi,Yi,Vi)}i�1 are non-negative independent observations with Yi,Vi corresponding to the right and left censoring
variables, respectively. The non-parametric maximum likelihood estimator for 1 − F = R is defined as a solution to the equation

R̂n(t) = 1 − Q(n)(t) +
∫
u� t

R̂n(t)

R̂n(u)
dQ(n)

2 (u) −
∫
u>t

1 − R̂n(t)

1 − R̂n(u)
dQ(n)

3 (u),

where

Q(n)
j (t) =

n∑
i=1

1
n
I{Wi� t,�i = j} for j = 1, 2, 3,

and

Q(n)(t) =
3∑

j=1

Q(n)
j (t).

One may desire to test

H0 : F = F0

using the Cramer–von Mises goodness of fit test under double censoring with the Cramer–von Mises statistic defined as

Tn = n
∫ ∞

0
[F̂n(x) − F0(x)]

2 dF0(x)

= n
∫ 1

0
[Ûn − U]2 dU,

where U is the uniform distribution function on [0,1] and

F̂n = 1 − R̂n and Ûn = F̂n ◦ F−1
0 .

Bickel and Ren (1996) propose to use the sub-sample bootstrap to set the critical values for this test. They show Efron's bootstrap
fails in this case and that the sub-sample bootstrap procedure is asymptotically consistent and has correct power against

√
n

alternatives. The Bayesian bootstrap may be used in a similar fashion as follows. Define the Bayesian bootstrap analogue of R, say
R∗
n, by replacing the Q(n)

j (t) terms with

Q∗
j (t) =

n∑
i=1

Zi,n
Sn

I{Wi� t,�i = j} for j = 1, 2, 3.
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Furthermore, let

F∗
n = 1 − R∗

n and U∗
n = F∗

n ◦ F−1
0 ,

and define the Bayesian bootstrap Cramer–von Mises statistic as

T∗
m,n = m�

∫ 1

0
[U∗

n(x) − U(x)]2 dU(x).

To set critical values for Tn, one uses the Bayesian bootstrap critical values ��,�,m(n), such that

P(T∗
m,n���,�,m(n)) = �.

Since the Zi,n's are continuous random variables, it follows that the choice of ��,�,m(n) is unique. Wellner and Zhan (1996)
establish functional central limit theorems for general exchangeable bootstraps of Z-estimators and give as an example the result
for double censored data. Using their work combined with some arguments from Bickel and Ren (1996), one can easily show that
the Bayesian bootstrap is equal in a first order sense to the sub-sample bootstrap in this case.

5. Some further notes and remarks

Except for unusual cases, the asymptotic failure of Efron's bootstrap can be resolved by m = o(n) resampling. In practice,
however, choosing an appropriate m needs careful attention. Asymptotically,

√
n, logn or 20 logn satisfy the o(n) requirement,

but in finite sample settings the actual results can vary dramatically depending on the choice. In what follows, we show our
procedures are relatively robust to the selection ofm. A valid sub-sample bootstrap requires thatm tends to infinity as n tends to
infinity. In the next theorem we show that if m does not converge to infinity when n tends to infinity then a reasonable limit is
still possible for the Bayesian bootstrap.

In the following theorem we take �m = �0, where m does not depend on n. We denote a gamma measure by G(�0F) and
a Dirichlet probability measure by DP(�0F) where �0 is the concentration measure and F is the prior guess. See Ferguson and
Klass (1972) and Ferguson (1973) for more details on Dirichlet and gamma processes and their applications in non-parametric
Bayesian inference.

Theorem 5.1. Let (Xi)i�1 be a sequence of i.i.d. random variables with a distribution F and let (Ti,n)1� i�n be a sequence of i.i.d.
random variables with a gamma distribution with shape parameter �0/n and scale parameter 1. Define

N(x) = �0

∫ ∞

x

e−u

u
du.

(i) Let pi,n = Ti,n/
∑n

i=1Ti,n for i = 1, . . . ,n. Then

n∑
i=1

�(Ti,n ,Xi)→d

∞∑
i=1

�(N−1(�i),Xi)

and

n∑
i=1

Ti,n�Xi→d

∞∑
i=1

N−1(�i)�Xi .

In this case, the first limit above is a gamma measure and denoted by G(�0F). Moreover,

n∑
i=1

pi,n�Xi (·)→d

∞∑
i=1

N−1(�i)∑∞
i=1N

−1(�i)
�Xi

d=
∞∑
i=1

Vi�Xi ∼ DP(�0F),

where

Vi = Ui(1 − U1) · · · (1 − Ui−1) for i = 1, 2, . . . .

Here (Ui)i�1 is a sequence of i.i.d. random variables with a Beta(1, �0) distribution.
(ii)

L

⎛
⎝ n∑

i=1

�Ti,nXi

∣∣∣∣∣∣X
⎞
⎠ → L

⎛
⎝ ∞∑

i=1

�N−1(�i)Xi

∣∣∣∣∣∣X
⎞
⎠



H. Ishwaran et al. / Journal of Statistical Planning and Inference 139 (2009) 788 -- 801 799

and similarly

L

⎛
⎝ n∑

i=1

�pi,nXi

∣∣∣∣∣∣X
⎞
⎠ → L

⎛
⎝ ∞∑

i=1

�ViXi

∣∣∣∣∣∣X
⎞
⎠ ,

where (Vi)i�1 is the same as in part (i).

Part (i) of the theorem shows that the bootstrapped empirical measure for the Bayesian bootstrap converges in distribution
to a Dirichlet process. In fact, the empirical measure is exactly the finite dimensional prior discussed in Ishwaran and Zarepour
(2002). The limiting Dirichlet process of part (i) has concentration parameter �0 and prior guess F, showing that the limit is a
random probability measure concentrated at the true distribution F. The larger the value of �0, the tighter this concentration.
Since �0 is controlled by m, this shows that a relatively large value of m ensures a reasonable limit; however, it is also clear that
the actual choice should not unduly affect inference.

Proof. Using Lemma 4.1 and noting that

n∑
i=1

P(Ti,n ∈ dx) = nP(T1,n ∈ dx) = n
�(�0/n)

e−xx�0/n−1 dx v→ �0
e−x

x
dx

implies (i). The rest of the theorem follows easily from (i) and the continuous mapping theorem applied to random measures.
Also, see Ishwaran and Zarepour (2002) and the references therein for the product representation (stick-breaking representation)
of Vi in part (i). �

Remark. Let (Ti,n)1� i�n satisfy the assumptions of Theorem 5.1 and am,n and (Xi)i�1 be defined as in Theorem 3.1. The
point process

∑n
i=1�(Ti,n ,a

−1
m,nXi)

and the random measure
∑n

i=1Ti,n�a−1
m,nXi

do not show interesting asymptotic behaviors for our

applications. In fact

n∑
i=1

�
(Ti,n ,a

−1
m,nXi)

→d

∞∑
i=1

�(N−1(�1,i),0)
+

∞∑
i=1

�
(0,�i�

−1/�0
2,i )

,

where (�1,i)i�1 and (�2,i)i�1 are independent and have the same distribution as (�i)i�1. To see this, note from the proof of
Theorem 5.1 if x >0, y >0,

nP(T1,n > x, a
−1
m,n|Xi| > y) = nP(T1,n > x)P(a

−1
m,n|Xi| > y) → N(x) × 0 = 0

and

nP(T1,n > x, a
−1
m,n|Xi| >0) = nP(T1,n > x) = N(x),

where N(x) is defined as in Theorem 5.1.
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Appendix A. Proof of Theorem 3.1

It follows from Araujo and Giné(1980) (see also Arcones and Giné, 1989) that we only need to check the following conditions:

(A)
∑n

i=1P{Zi,n|Xi| >�am,n|X} P→�−� for � >0.

(B) Var(
∑n

i=1(Zi,nXi/am,n)I{Zi,n|Xi|��am,n}|X) P→0.

For (A) we have that

n∑
i=1

E(P{Zi,n|Xi| >�am,n|X}) = nP{Z1,n|X1| >�am,n}
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and

nP{Z1,n|X1| >�am,n} = m
∫ ∞

0
P
{
|X1| > �

u
am,n

}
um/n−1

�(m/n + 1)
e−u du.

From (3.1), we get mP{|X1| > yam,n} → y−�[�(�)]−1 as m tends to infinity, uniformly in y over relatively compact sets bounded
away from 0 (use the metric d(x, y) = |1/x − 1/y|). Therefore,

lim
m,n→∞nP{Z1,n|X1| >�am,n} = �−�[�(�)]−1 lim

m,n→∞ lim
M→∞

∫ M

1/M

um/n+�−1

�(m/n + 1)
e−u du

= �−� lim
m,n→∞

�(m/n + �)
�(m/n + 1)�(�)

= �−�.

The verification of condition (A) is completed by showing

nVar(P{Z1,n|X1| >�am,n|X}) P→0.

Notice that by Markov's inequality

P{Z1,n|X1| >�am,n|X}�
( |X1|

�am,n

)�/2
E(Z�/2

1,n ),

with

E(Z�/2
1 ) = m

n
�(m/n + �/2)
�(m/n + 1)

and

lim
n→∞

�(m/n + �/2)
�(m/n + 1)

= �(�/2).

Thus,

nE(P{Z1,n|X1| >�am,n|X})2��−�a−�
m,nE|X1|�[E(Z�/2

1,n )]
2�

m
n
K → 0.

For (B), one could proceed using the fact that

lim
n→∞ a−2

n U(an�) = �2−�,

where

U(an�) = E(X21 I{|X1|��an}),

and using arguments similar to those above. However, one needs only notice that

E

⎛
⎝ n∑
i=1

(Zi,nXi/am,n)2I{Zi,n|Xi|��am,n}|X
⎞
⎠

��2−�E

⎛
⎝ n∑
i=1

(Zi,n|Xi|/am,n)�I{Zi,n|Xi|��am,n}|X
⎞
⎠

��2−�

⎛
⎝ n∑
i=1

|Xi|�/n
⎞
⎠ ,

which completes the proof. �
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